Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[3-chloro-6-(3,5-dimethyl-1*H*-pyrazol-1-yl)picolinato]cadmium(II) tetrahydrate

Kai Zhao,^{a,b} Xian-Hong Yin,^{a,b}* Yu Feng^a and Jie Zhu^b

 ^a, ^aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and ^bDepartment of Chemistry, Guangxi University, Nanning 530008, People's Republic of China Correspondence e-mail: yxhphd@163.com

Received 2 November 2007; accepted 5 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.037; wR factor = 0.101; data-to-parameter ratio = 13.2.

In the title compound, $[Cd(C_{11}H_9CIN_3O_2)_2] \cdot 4H_2O$, the Cd^{II} atom is coordinated by four N atoms and two O atoms from two picolinate ligands in a distorted octahedral geometry. In the crystal structure, molecules are linked together by intermolecular $O-H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Bhatia et al. (1981); Costamagna et al. (1992).

Experimental

 $\beta = 102.249 \ (2)^{\circ}$

Crystal data $[Cd(C_{11}H_9CIN_3O_2)_2] \cdot 4H_2O$ $M_r = 685.79$ Triclinic, $P\overline{1}$ a = 10.1790 (10) Å b = 11.4140 (14) Å c = 13.4240 (18) Å $\alpha = 114.745$ (3)°

 $\gamma = 96.4280 (10)^{\circ}$ $V = 1348.3 (3) \text{ Å}^{3}$ Z = 2Mo K α radiation $\mu = 1.07 \text{ mm}^{-1}$ T = 298 (2) K $0.51 \times 0.50 \times 0.48 \text{ mm}$ $R_{\rm int} = 0.020$

6989 measured reflections

4645 independent reflections

3752 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.613, T_{max} = 0.629$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	352 parameters
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$
4645 reflections	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Table 1

1	yd	lrogen-	bond	geome	try	(A, '	٥)).
---	----	---------	------	-------	-----	-------	----	----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5A\cdots O2^{i}$	0.85	2.31	3.155 (6)	176
$O5-H5B\cdots O4^{ii}$	0.85	2.03	2.883 (6)	176
$O6-H6A\cdots O2^{iii}$	0.85	1.96	2.804 (10)	176
$O6-H6B\cdots O2^{iv}$	0.85	2.29	3.135 (10)	176
$O7-H7D\cdots O5^{v}$	0.85	1.91	2.757 (9)	176
$O7-H7E\cdots O8^{v}$	0.85	2.02	2.866 (13)	176
$08 - H8A \cdots O6^{v}$ $08 - H8B \cdots O7^{vi}$	0.85	1.82	2.664 (13)	177
	0.85	1.82	2.670 (15)	177

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) x + 1, y, z; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) x, y + 1, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry, and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012,0509ZD047).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2342).

References

Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.

Costamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67–88.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m3023 [doi:10.1107/S1600536807055857]

Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cadmium(II) tetrahydrate

K. Zhao, X.-H. Yin, Y. Feng and J. Zhu

Comment

In recent years, there has been an increasing interest in the coordination chemistry due to the increased recognition of it's role in catalysis enzymatic reactions, magnetism and molecular architectures (Costamagna *et al.*, 1992; Bhatia *et al.*, 1981). We report here the crystal structure of a new zinc(II) complex with the ligand 6-(3-chloro- (3,5-dimethyl-1*H*-pyrazol-1-yl)) picolinic acid(CDPA)·(I) (Fig.1).

The title compound, (I), consists of a cadmium(II) complex cation and four uncoordinated water molecules. In the cation (Fig. 1), the Cd atom is six-coordinated by four N atoms and two O atomsfrom two CDPA ligands. The Cd(II) atom is a slightly distorted octahedral environment. The Cd–O bond lengths are 2.243 (3) and 2.266 (3) Å, The Cd–N distances range from 2.320 (3) to 2.350 (3) Å. The C1–C2 bond length is 1.533 (6) Å, being in the normal C–C ranges in cadmium carboxylate complexes. The angles around Cd(II) atom are from 68.54 (11) to 139.29 (11)°. The CDPA molecule acts as a bidentate ligand.

In the title compound, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving water O atoms. (Table 1).

Experimental

6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, and CdCl₂. $6H_2O$ were available commercially and were used without further purification. Equimolar 6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid (1 mmol, 250 mg) was dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added CdCl₂· $6H_2O$ (0.5 mmol, 142 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, dark red prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 38.43; H, 3.92; N, 12.15; O, 18.76; calc. for C₂₂H₂₆CdCl₂N₆O₈: C, 38.53; H, 3.82; N, 12.25; O, 18.66%.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H and C—H distances of 0.90 Å and 0.96 Å, respectively. They were treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$, $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.

Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cadmium(II) tetrahydrate

Crystal data	
$[Cd(C_{11}H_9ClN_3O_2)_2]\cdot 4H_2O$	Z = 2
$M_r = 685.79$	$F_{000} = 692$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.689 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.1790 (10) Å	Cell parameters from 3835 reflections
b = 11.4140 (14) Å	$\theta = 2.6 - 27.6^{\circ}$
c = 13.4240 (18) Å	$\mu = 1.07 \text{ mm}^{-1}$
$\alpha = 114.745 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 102.249 \ (2)^{\circ}$	Block, colorless
$\gamma = 96.4280 \ (10)^{\circ}$	$0.51\times0.50\times0.48~mm$
$V = 1348.3 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	4645 independent reflections
Radiation source: fine-focus sealed tube	3752 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
phi and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 11$
$T_{\min} = 0.613, \ T_{\max} = 0.629$	$k = -6 \rightarrow 13$
6989 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 1.4843P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4645 reflections	$\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$
352 parameters	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.28358 (3)	0.52895 (3)	0.75795 (3)	0.04744 (13)
Cl1	0.28940 (15)	0.04201 (12)	0.81008 (14)	0.0788 (4)
C12	-0.05630 (14)	0.92388 (12)	0.82716 (12)	0.0679 (4)
N1	0.3954 (3)	0.3897 (3)	0.8128 (2)	0.0354 (7)
N2	0.5982 (3)	0.5488 (3)	0.8803 (3)	0.0366 (7)
N3	0.5202 (3)	0.6247 (3)	0.8477 (3)	0.0429 (8)
N4	0.1674 (3)	0.6646 (3)	0.6998 (3)	0.0363 (7)
N5	0.2145 (3)	0.5588 (3)	0.5272 (3)	0.0412 (7)
N6	0.2745 (3)	0.4811 (3)	0.5704 (3)	0.0461 (8)
01	0.1292 (3)	0.3403 (4)	0.7077 (3)	0.0696 (10)
02	0.0848 (4)	0.1492 (4)	0.7108 (5)	0.1164 (18)
O3	0.2019 (4)	0.6588 (4)	0.8981 (3)	0.0711 (10)
O4	0.1175 (5)	0.8337 (4)	0.9710 (3)	0.0928 (13)
05	0.1574 (4)	0.7985 (4)	0.1750 (3)	0.0868 (11)
H5A	0.0902	0.8134	0.2033	0.104*
H5B	0.1419	0.8098	0.1152	0.104*
O6	0.8516 (7)	0.0186 (7)	0.5197 (7)	0.194 (3)
H6A	0.9247	0.0565	0.5755	0.232*
H6B	0.8737	-0.0257	0.4593	0.232*
07	0.5992 (8)	0.1002 (12)	0.6502 (7)	0.320 (7)
H7D	0.6761	0.1315	0.7021	0.384*
H7E	0.6127	0.0984	0.5893	0.384*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

08	0.3705 (9)	0.9082 (10)	0.5599 (7)	0.252 (5)
H8A	0.3011	0.9345	0.5363	0.303*
H8B	0.4417	0.9709	0.5876	0.303*
C1	0.1637 (5)	0.2515 (5)	0.7311 (4)	0.0619 (13)
C2	0.3166 (4)	0.2746 (4)	0.7924 (3)	0.0411 (9)
C3	0.3773 (4)	0.1916 (4)	0.8290 (4)	0.0471 (10)
C4	0.5165 (5)	0.2285 (4)	0.8846 (4)	0.0583 (12)
H4	0.5579	0.1730	0.9091	0.070*
C5	0.5943 (4)	0.3456 (4)	0.9043 (4)	0.0520 (11)
Н5	0.6880	0.3714	0.9428	0.062*
C6	0.5290 (4)	0.4244 (4)	0.8650 (3)	0.0348 (8)
C7	0.8520 (4)	0.5611 (5)	0.9700 (4)	0.0592 (12)
H7A	0.9379	0.6213	0.9900	0.089*
H7B	0.8509	0.4762	0.9107	0.089*
H7C	0.8418	0.5523	1.0362	0.089*
C8	0.7345 (4)	0.6139 (4)	0.9277 (3)	0.0425 (9)
С9	0.7415 (5)	0.7315 (4)	0.9249 (4)	0.0526 (11)
Н9	0.8208	0.7975	0.9509	0.063*
C10	0.6079 (4)	0.7357 (4)	0.8756 (4)	0.0479 (10)
C11	0.5576 (6)	0.8428 (5)	0.8524 (5)	0.0756 (15)
H11A	0.4841	0.8036	0.7821	0.113*
H11B	0.6321	0.8962	0.8460	0.113*
H11C	0.5243	0.8971	0.9141	0.113*
C12	0.1458 (4)	0.7485 (4)	0.8925 (4)	0.0494 (10)
C13	0.1089 (4)	0.7461 (4)	0.7743 (3)	0.0379 (8)
C14	0.0228 (4)	0.8155 (4)	0.7387 (4)	0.0433 (9)
C15	-0.0012 (4)	0.7982 (4)	0.6274 (4)	0.0498 (10)
H15	-0.0588	0.8445	0.6030	0.060*
C16	0.0583 (4)	0.7141 (4)	0.5526 (4)	0.0458 (10)
H16	0.0411	0.7011	0.4775	0.055*
C17	0.1456 (4)	0.6489 (4)	0.5942 (3)	0.0371 (8)
C18	0.1855 (6)	0.5966 (7)	0.3503 (5)	0.0856 (18)
H18A	0.2302	0.5746	0.2907	0.128*
H18B	0.2100	0.6907	0.3978	0.128*
H18C	0.0873	0.5682	0.3168	0.128*
C19	0.2308 (4)	0.5284 (5)	0.4213 (4)	0.0521 (11)
C20	0.3009 (5)	0.4300 (5)	0.3984 (4)	0.0618 (13)
H20	0.3274	0.3884	0.3322	0.074*
C21	0.3260 (4)	0.4027 (4)	0.4918 (4)	0.0520 (11)
C22	0.3962 (6)	0.3021 (5)	0.5088 (5)	0.0752 (15)
H22A	0.4616	0.3425	0.5834	0.113*
H22B	0.4434	0.2675	0.4516	0.113*
H22C	0.3288	0.2313	0.5023	0.113*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04307 (19)	0.0611 (2)	0.0546 (2)	0.02603 (15)	0.01381 (14)	0.03812 (16)

Cl1	0.0807 (9)	0.0469 (7)	0.1047 (11)	0.0000 (6)	0.0116 (8)	0.0413 (7)
Cl2	0.0791 (8)	0.0659 (7)	0.0984 (10)	0.0460 (7)	0.0555 (8)	0.0525 (7)
N1	0.0331 (16)	0.0381 (17)	0.0355 (16)	0.0099 (13)	0.0052 (13)	0.0188 (14)
N2	0.0322 (16)	0.0397 (17)	0.0433 (18)	0.0124 (14)	0.0090 (14)	0.0235 (15)
N3	0.0434 (19)	0.0458 (19)	0.050 (2)	0.0178 (16)	0.0146 (16)	0.0289 (16)
N4	0.0327 (16)	0.0420 (17)	0.0405 (18)	0.0120 (14)	0.0097 (14)	0.0242 (14)
N5	0.0399 (18)	0.0475 (19)	0.0367 (18)	0.0136 (15)	0.0072 (14)	0.0204 (15)
N6	0.050(2)	0.0453 (19)	0.048 (2)	0.0194 (16)	0.0143 (16)	0.0230 (16)
01	0.0348 (16)	0.094 (3)	0.089 (2)	0.0062 (16)	-0.0037 (16)	0.063 (2)
02	0.059 (2)	0.095 (3)	0.180 (5)	-0.020 (2)	-0.024 (3)	0.085 (3)
O3	0.086 (2)	0.108 (3)	0.0575 (19)	0.066 (2)	0.0353 (18)	0.056 (2)
O4	0.154 (4)	0.099 (3)	0.058 (2)	0.078 (3)	0.054 (2)	0.042 (2)
05	0.092 (3)	0.102 (3)	0.079 (3)	0.045 (2)	0.029 (2)	0.044 (2)
O6	0.153 (6)	0.172 (6)	0.193 (7)	0.002 (5)	-0.010 (5)	0.061 (5)
07	0.161 (7)	0.516 (18)	0.122 (6)	-0.095 (9)	0.018 (5)	0.049 (8)
08	0.207 (8)	0.286 (11)	0.192 (8)	0.021 (8)	0.069 (7)	0.045 (8)
C1	0.043 (2)	0.066 (3)	0.074 (3)	0.000 (2)	0.000 (2)	0.039 (3)
C2	0.040 (2)	0.041 (2)	0.039 (2)	0.0070 (18)	0.0069 (17)	0.0176 (17)
C3	0.054 (3)	0.037 (2)	0.051 (2)	0.0104 (19)	0.011 (2)	0.0229 (19)
C4	0.058 (3)	0.045 (3)	0.076 (3)	0.016 (2)	0.006 (2)	0.037 (2)
C5	0.040 (2)	0.052 (3)	0.069 (3)	0.012 (2)	0.004 (2)	0.037 (2)
C6	0.0330 (19)	0.038 (2)	0.0331 (19)	0.0126 (16)	0.0072 (16)	0.0166 (16)
C7	0.035 (2)	0.077 (3)	0.068 (3)	0.008 (2)	0.004 (2)	0.042 (3)
C8	0.039 (2)	0.050 (2)	0.042 (2)	0.0084 (18)	0.0131 (18)	0.0239 (19)
С9	0.049 (3)	0.052 (3)	0.054 (3)	-0.001 (2)	0.014 (2)	0.025 (2)
C10	0.056 (3)	0.046 (2)	0.055 (3)	0.016 (2)	0.023 (2)	0.031 (2)
C11	0.086 (4)	0.058 (3)	0.104 (4)	0.022 (3)	0.031 (3)	0.053 (3)
C12	0.048 (2)	0.062 (3)	0.050 (3)	0.023 (2)	0.022 (2)	0.030 (2)
C13	0.035 (2)	0.040 (2)	0.047 (2)	0.0115 (17)	0.0160 (17)	0.0248 (18)
C14	0.040(2)	0.041 (2)	0.064 (3)	0.0161 (18)	0.024 (2)	0.033 (2)
C15	0.042 (2)	0.056 (3)	0.073 (3)	0.022 (2)	0.016 (2)	0.046 (2)
C16	0.043 (2)	0.054 (2)	0.048 (2)	0.0135 (19)	0.0087 (19)	0.033 (2)
C17	0.0321 (19)	0.042 (2)	0.041 (2)	0.0068 (16)	0.0073 (16)	0.0236 (17)
C18	0.092 (4)	0.137 (5)	0.063 (3)	0.055 (4)	0.038 (3)	0.063 (4)
C19	0.048 (2)	0.070 (3)	0.040 (2)	0.017 (2)	0.0142 (19)	0.025 (2)
C20	0.061 (3)	0.076 (3)	0.045 (3)	0.025 (3)	0.023 (2)	0.018 (2)
C21	0.046 (2)	0.054 (3)	0.053 (3)	0.018 (2)	0.016 (2)	0.019 (2)
C22	0.079 (4)	0.068 (3)	0.088 (4)	0.043 (3)	0.032 (3)	0.033 (3)
Geometric part	ameters (Å, °)					
Cd1 = 03		2 242 (2)	C2	C4	1.27	17 (6)
Cd1 = 01		2.243(3)	C4	C7	1.37	(0) 54 (6)
$Cd1_N6$		2.200(3)	C4—	UJ H4	1.50	
Cd1—N1		2.520(3)	C4	г. г. Сб	1 20	3 (5)
Cd1 - N4		2.322(3)	C5	со H5	1.50	5 (5) 300
Cd1 = N3		2.331(3) 2 350(3)	C7	C8	0.93	18 (6)
		2.550(5) 1 726 (A)	C7	U0 Η7Δ	0.04	
C12 - C14		1.720 (4)	C7.	H7B	0.90	500
012 017		1.720 (+)	0/		0.70	

N1	1 319 (4)	C7—H7C	0.9600
N1—C2	1 346 (5)	C8 - C9	1 353 (6)
N2-C8	1 371 (5)	C9-C10	1 396 (6)
N2N3	1 378 (4)	C9—H9	0.9300
N2—C6	1 423 (5)	C10—C11	1 498 (6)
N3—C10	1 323 (5)	C11—H11A	0.9600
N4—C17	1.325(5)	C11—H11B	0.9600
N4—C13	1 348 (5)	C11—H11C	0.9600
N5-C19	1 368 (5)	C12-C13	1 539 (6)
N5-N6	1 378 (4)	C13—C14	1 385 (5)
N5-C17	1 419 (5)	C14—C15	1 385 (6)
N6—C21	1 318 (5)	C15-C16	1 370 (6)
01-C1	1 245 (5)	C15—H15	0.9300
$0^{2}-0^{1}$	1.230 (6)	C16-C17	1 393 (5)
03 - C12	1.238 (5)	C16—H16	0.9300
04 - C12	1.213 (5)	C18-C19	1 498 (7)
05-454	0.8500	C18—H18A	0.9600
05-H5R	0.8501	C18—H18B	0.9600
05 H5D	0.8500	C18—H18C	0.9600
06—H6B	0.8500	C_{19} C_{20}	1 359 (6)
07—H7D	0.8500	C20_C21	1.394(7)
07—H7E	0.8500	C20 C21	0.9300
08	0.8500	C21_C22	1 489 (6)
08—H8B	0.8501	C22_H22A	0.9600
$C_1 = C_2$	1 533 (6)	C22—H22R	0.9600
$C_1 = C_2$	1.335 (0)	C22—H22C	0.9600
	1.504 (5)		0.9000
03-CdI-Ol	95.33 (14)	H/A - C/ - H/B	109.5
03—CdI—N6	138.84 (11)	C8—C/—H/C	109.5
OI—CdI—N6	94.09 (13)	H/A - C/ - H/C	109.5
O3—Cd1—NI	110.04 (11)	H/B - C/ - H/C	109.5
OI-CdI-NI	70.52 (11)	C9—C8—N2	106.1 (4)
N6—Cd1—N1	110.88 (11)	C9—C8—C7	127.7 (4)
O3—Cd1—N4	70.45 (11)	N2—C8—C7	126.2 (4)
OI—CdI—N4	108.27 (11)	C8—C9—C10	107.5 (4)
N6—Cd1—N4	68.54 (11)	С8—С9—Н9	126.3
NI—CdI—N4	178.70 (11)	C10—C9—H9	126.3
O3—Cd1—N3	98.39 (13)	N3-C10-C9	110.2 (4)
OI—CdI—N3	139.29 (11)	N3—C10—C11	120.3 (4)
N6—Cd1—N3	100.11 (12)	C9—C10—C11	129.6 (4)
N1—Cd1—N3	<pre>< > - < < < > </pre>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
N4—Cd1—N3	68.76 (11)	C10—C11—H11A	109.5
a a.	68.76 (11) 112.44 (11)	C10—C11—H11A C10—C11—H11B	109.5 109.5
C6—N1—C2	68.76 (11) 112.44 (11) 121.9 (3)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B	109.5 109.5 109.5
C6—N1—C2 C6—N1—Cd1	68.76 (11) 112.44 (11) 121.9 (3) 121.2 (2)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B C10—C11—H11C	109.5 109.5 109.5 109.5
C6—N1—C2 C6—N1—Cd1 C2—N1—Cd1	68.76 (11) 112.44 (11) 121.9 (3) 121.2 (2) 116.8 (2)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B C10—C11—H11C H11A—C11—H11C	109.5 109.5 109.5 109.5 109.5
C6—N1—C2 C6—N1—Cd1 C2—N1—Cd1 C8—N2—N3	68.76 (11) 112.44 (11) 121.9 (3) 121.2 (2) 116.8 (2) 110.5 (3)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B C10—C11—H11C H11A—C11—H11C H11B—C11—H11C	109.5 109.5 109.5 109.5 109.5 109.5
C6—N1—C2 C6—N1—Cd1 C2—N1—Cd1 C8—N2—N3 C8—N2—C6	68.76 (11) 112.44 (11) 121.9 (3) 121.2 (2) 116.8 (2) 110.5 (3) 131.3 (3)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B C10—C11—H11C H11A—C11—H11C H11B—C11—H11C O4—C12—O3	109.5 109.5 109.5 109.5 109.5 109.5 125.4 (4)
C6—N1—C2 C6—N1—Cd1 C2—N1—Cd1 C8—N2—N3 C8—N2—C6 N3—N2—C6	68.76 (11) 112.44 (11) 121.9 (3) 121.2 (2) 116.8 (2) 110.5 (3) 131.3 (3) 118.1 (3)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B C10—C11—H11C H11A—C11—H11C H11B—C11—H11C O4—C12—O3 O4—C12—C13	109.5 109.5 109.5 109.5 109.5 109.5 125.4 (4) 119.1 (4)
C6—N1—C2 C6—N1—Cd1 C2—N1—Cd1 C8—N2—N3 C8—N2—C6 N3—N2—C6 C10—N3—N2	68.76 (11) 112.44 (11) 121.9 (3) 121.2 (2) 116.8 (2) 110.5 (3) 131.3 (3) 118.1 (3) 105.7 (3)	C10—C11—H11A C10—C11—H11B H11A—C11—H11B C10—C11—H11C H11A—C11—H11C H11B—C11—H11C O4—C12—O3 O4—C12—C13 O3—C12—C13	109.5 109.5 109.5 109.5 109.5 109.5 125.4 (4) 119.1 (4) 115.5 (4)

N2—N3—Cd1	116.4 (2)	N4—C13—C12	114.0 (3)
C17—N4—C13	122.1 (3)	C14—C13—C12	127.0 (3)
C17—N4—Cd1	120.9 (2)	C13—C14—C15	118.9 (4)
C13—N4—Cd1	116.4 (2)	C13—C14—Cl2	123.1 (3)
C19—N5—N6	110.3 (3)	C15—C14—Cl2	118.1 (3)
C19—N5—C17	132.0 (3)	C16—C15—C14	121.3 (4)
N6—N5—C17	117.6 (3)	C16—C15—H15	119.4
C21—N6—N5	106.4 (3)	C14—C15—H15	119.4
C21—N6—Cd1	135.9 (3)	C15—C16—C17	117.0 (4)
N5—N6—Cd1	117.3 (2)	C15—C16—H16	121.5
C1—O1—Cd1	121.6 (3)	С17—С16—Н16	121.5
C12—O3—Cd1	122.4 (3)	N4—C17—C16	121.6 (3)
H5A—O5—H5B	108.5	N4—C17—N5	114.7 (3)
H6A—O6—H6B	108.5	C16—C17—N5	123.6 (3)
H7D—O7—H7E	108.5	C19—C18—H18A	109.5
H8A—O8—H8B	108.5	C19—C18—H18B	109.5
O2-C1-O1	125.3 (4)	H18A—C18—H18B	109.5
O2—C1—C2	118.2 (4)	C19—C18—H18C	109.5
O1—C1—C2	116.5 (4)	H18A—C18—H18C	109.5
N1—C2—C3	118.9 (3)	H18B-C18-H18C	109.5
N1—C2—C1	114.5 (4)	C20-C19-N5	105.8 (4)
C3—C2—C1	126.6 (4)	C20-C19-C18	128.4 (4)
C4—C3—C2	119.2 (4)	N5-C19-C18	125.7 (4)
C4—C3—Cl1	116.7 (3)	C19—C20—C21	107.8 (4)
C2—C3—Cl1	124.1 (3)	С19—С20—Н20	126.1
C5—C4—C3	120.9 (4)	С21—С20—Н20	126.1
C5—C4—H4	119.6	N6-C21-C20	109.6 (4)
C3—C4—H4	119.6	N6—C21—C22	121.1 (4)
C4—C5—C6	117.7 (4)	C20—C21—C22	129.3 (4)
C4—C5—H5	121.1	C21—C22—H22A	109.5
С6—С5—Н5	121.1	C21—C22—H22B	109.5
N1—C6—C5	121.4 (3)	H22A—C22—H22B	109.5
N1—C6—N2	115.3 (3)	C21—C22—H22C	109.5
C5—C6—N2	123.3 (3)	H22A—C22—H22C	109.5
С8—С7—Н7А	109.5	H22B—C22—H22C	109.5
С8—С7—Н7В	109.5		
O3—Cd1—N1—C6	-91.2 (3)	N1—C2—C3—C4	-0.3 (6)
01—Cd1—N1—C6	-179.9 (3)	C1—C2—C3—C4	-178.9 (4)
N6—Cd1—N1—C6	93.2 (3)	N1—C2—C3—Cl1	179.4 (3)
N4—Cd1—N1—C6	157 (5)	C1—C2—C3—Cl1	0.8 (6)
N3—Cd1—N1—C6	0.2 (3)	C2—C3—C4—C5	0.3 (7)
O3—Cd1—N1—C2	86.4 (3)	Cl1—C3—C4—C5	-179.5 (4)
O1—Cd1—N1—C2	-2.2 (3)	C3—C4—C5—C6	-0.9 (7)
N6—Cd1—N1—C2	-89.1 (3)	C2—N1—C6—C5	-1.7 (6)
N4—Cd1—N1—C2	-26 (5)	Cd1—N1—C6—C5	175.8 (3)
N3—Cd1—N1—C2	177.8 (3)	C2—N1—C6—N2	180.0 (3)
C8—N2—N3—C10	-0.3 (4)	Cd1—N1—C6—N2	-2.5 (4)
C6—N2—N3—C10	177.2 (3)	C4—C5—C6—N1	1.6 (6)
C8—N2—N3—Cd1	177.9 (2)	C4—C5—C6—N2	179.8 (4)

C6—N2—N3—Cd1	-4.6 (4)	C8—N2—C6—N1	-178.4 (4)
O3-Cd1-N3-C10	-71.9 (4)	N3—N2—C6—N1	4.7 (5)
O1-Cd1-N3-C10	179.7 (4)	C8—N2—C6—C5	3.3 (6)
N6-Cd1-N3-C10	71.1 (4)	N3—N2—C6—C5	-173.7 (4)
N1—Cd1—N3—C10	179.7 (4)	N3—N2—C8—C9	0.0 (4)
N4—Cd1—N3—C10	0.3 (4)	C6—N2—C8—C9	-177.1 (4)
O3—Cd1—N3—N2	110.6 (2)	N3—N2—C8—C7	-177.9 (4)
O1—Cd1—N3—N2	2.2 (3)	C6—N2—C8—C7	5.0 (7)
N6—Cd1—N3—N2	-106.3 (2)	N2-C8-C9-C10	0.2 (5)
N1—Cd1—N3—N2	2.3 (2)	C7—C8—C9—C10	178.1 (4)
N4—Cd1—N3—N2	-177.1 (2)	N2—N3—C10—C9	0.5 (4)
O3—Cd1—N4—C17	-173.3 (3)	Cd1—N3—C10—C9	-177.2 (3)
O1-Cd1-N4-C17	-84.0 (3)	N2—N3—C10—C11	-179.8 (4)
N6—Cd1—N4—C17	3.1 (3)	Cd1—N3—C10—C11	2.5 (7)
N1—Cd1—N4—C17	-61 (5)	C8—C9—C10—N3	-0.4 (5)
N3—Cd1—N4—C17	95.5 (3)	C8—C9—C10—C11	179.9 (5)
O3—Cd1—N4—C13	-1.8 (3)	Cd1—O3—C12—O4	-168.9 (4)
O1-Cd1-N4-C13	87.5 (3)	Cd1—O3—C12—C13	12.2 (5)
N6—Cd1—N4—C13	174.6 (3)	C17—N4—C13—C14	0.2 (5)
N1-Cd1-N4-C13	111 (5)	Cd1—N4—C13—C14	-171.2 (3)
N3—Cd1—N4—C13	-93.0 (3)	C17—N4—C13—C12	179.1 (3)
C19—N5—N6—C21	-0.7 (4)	Cd1—N4—C13—C12	7.7 (4)
C17—N5—N6—C21	177.3 (3)	O4—C12—C13—N4	168.1 (4)
C19—N5—N6—Cd1	173.2 (3)	O3—C12—C13—N4	-12.9 (5)
C17—N5—N6—Cd1	-8.8 (4)	O4-C12-C13-C14	-13.1 (7)
O3-Cd1-N6-C21	179.8 (4)	O3—C12—C13—C14	165.9 (4)
O1-Cd1-N6-C21	-77.3 (4)	N4-C13-C14-C15	0.4 (6)
N1-Cd1-N6-C21	-6.6 (4)	C12—C13—C14—C15	-178.3 (4)
N4—Cd1—N6—C21	174.6 (4)	N4-C13-C14-Cl2	-179.3 (3)
N3-Cd1-N6-C21	64.4 (4)	C12-C13-C14-Cl2	1.9 (6)
O3—Cd1—N6—N5	8.3 (4)	C13-C14-C15-C16	0.1 (6)
O1-Cd1-N6-N5	111.2 (3)	Cl2—C14—C15—C16	179.8 (3)
N1-Cd1-N6-N5	-178.1 (2)	C14-C15-C16-C17	-1.1 (6)
N4—Cd1—N6—N5	3.2 (2)	C13—N4—C17—C16	-1.3 (6)
N3—Cd1—N6—N5	-107.1 (3)	Cd1—N4—C17—C16	169.7 (3)
O3—Cd1—O1—C1	-107.2 (4)	C13—N4—C17—N5	-179.6 (3)
N6-Cd1-O1-C1	112.9 (4)	Cd1—N4—C17—N5	-8.6 (4)
N1—Cd1—O1—C1	2.2 (4)	C15-C16-C17-N4	1.7 (6)
N4—Cd1—O1—C1	-178.4 (4)	C15-C16-C17-N5	179.9 (4)
N3—Cd1—O1—C1	2.2 (5)	C19—N5—C17—N4	-171.2 (4)
O1—Cd1—O3—C12	-113.7 (4)	N6—N5—C17—N4	11.3 (5)
N6-Cd1-O3-C12	-11.3 (5)	C19—N5—C17—C16	10.5 (6)
N1—Cd1—O3—C12	175.1 (4)	N6-N5-C17-C16	-167.0 (3)
N4—Cd1—O3—C12	-6.2 (4)	N6—N5—C19—C20	0.5 (5)
N3—Cd1—O3—C12	104.7 (4)	C17—N5—C19—C20	-177.1 (4)
Cd1—O1—C1—O2	176.9 (5)	N6—N5—C19—C18	-176.8 (5)
Cd1—O1—C1—C2	-1.8 (6)	C17—N5—C19—C18	5.6 (8)
C6—N1—C2—C3	1.0 (5)	N5-C19-C20-C21	-0.1 (5)
Cd1—N1—C2—C3	-176.6 (3)	C18—C19—C20—C21	177.1 (5)

C6—N1—C2—C1	179.8 (4)	N5—N6—C21—C20	0.6 (5)
Cd1—N1—C2—C1	2.2 (4)	Cd1—N6—C21—C20	-171.5 (3)
O2-C1-C2-N1	-179.1 (5)	N5—N6—C21—C22	-178.5 (4)
O1—C1—C2—N1	-0.4 (6)	Cd1—N6—C21—C22	9.4 (7)
O2—C1—C2—C3	-0.4 (8)	C19—C20—C21—N6	-0.3 (6)
O1—C1—C2—C3	178.3 (4)	C19—C20—C21—C22	178.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O5—H5A···O2 ⁱ	0.85	2.31	3.155 (6)	176
O5—H5B···O4 ⁱⁱ	0.85	2.03	2.883 (6)	176
O6—H6A···O2 ⁱⁱⁱ	0.85	1.96	2.804 (10)	176
O6—H6B···O2 ^{iv}	0.85	2.29	3.135 (10)	176
O7—H7D···O5 ^v	0.85	1.91	2.757 (9)	176
O7—H7E···O8 ^v	0.85	2.02	2.866 (13)	176
O8—H8A···O6 ^v	0.85	1.82	2.664 (13)	177
O8—H8B···O7 ^{vi}	0.85	1.82	2.670 (15)	177

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*, *y*+1, *z*.

Fig. 1

Fig. 2